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ABSTRACT 
 
In the classic portfolio management theory, the weights of the optimized portfolios are directly 
proportional to the inverse of the asset correlation matrix. We show that, from the Big Data 
perspective, the inverse of the correlation matrix adds more value to optimal portfolio selection 
than the correlation matrix itself. We further show the empirical results of portfolio reallocation 
under different common portfolio composition scenarios, and outperform traditional portfolio 
allocation techniques out-of-sample, delivering nearly 400% improvement over the 
equally-weighted allocation over a 20-year investment period. 
 
  
 

I. INTRODUCTION 
 
According to DeMiguel, Garlappi and Uppal (2009, p. 1915), the idea of diversifying one’s 
financial portfolio dates back at least to the fourth century AD, when Rabbi Issac bar Aha 
documented a rule for asset allocation in the Babylonian Talmud (Tractate Baba Mezi’a, folio 
42a): “One should always divide his wealth into three parts: a third in land, a third in 
merchandise, and a third ready to hand.” 
 
Modern portfolio theory originated from Markowitz (1952, 1954) and these papers suggested not 
only diversifying assets and asset classes, but also finessing portfolio composition by taking into 
account mutual co-movement of returns. Investments, the theory goes, should be diversified so 
that if or when one investment head south, the others rise or at least they counterbalance the 
total value of the portfolio. Co-movement of returns is often proxied by correlation matrices. The 
optimal portfolio weights are computed to be directly proportional to the correlation matrix 
inverse. 
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When the number of positions is relatively small and stable, the classic Markowitz framework 
may work well. For larger portfolios, such as mutual funds and hedge funds with assets valued 
in the billions of USD, diversification suffers with unstable variance-covariance matrices, costly 
reallocation requirements and with some illiquid positions. Exchange-Traded Funds (ETFs) 
further complicate the situation by providing a low-cost universe of potentially redundant 
securities that did not exist during Markowitz era. The correlation matrices become very large. 
Big Data techniques become necessary to intelligently reduce the size of the correlation 
matrices, to select the key drivers in portfolios and to remove redundant securities. Doing so 
helps portfolio managers improve transaction costs, stability of portfolio weights and liquidity. 
With the advent of MiFID II and streamlined potentially flat transaction fees per financial 
instrument, the smaller universe of financial instruments traded may be particularly beneficial to 
institutional investors. 
 
Another benefit of reducing portfolio selection is the shortened history required for a robust 
performance estimation. As illustrated by DeMiguel, Garlappi and Uppal (2009), increasing the 
number of instruments in the portfolio requires a significant increase in the length of historical 
data. Specifically, DeMiguel, Garlappi and Uppal (2009) find that a portfolio of 25 assets with 
monthly re-allocation requires a 250 year estimation window (across all of the positions) to 
reliably outperform the equally-weighted strategy. This is a difficult requirement to fulfil 
considering reliable daily records have been kept for less than 70 years. DeMiguel, Garlappi 
and Uppal (2009) also show out that the required estimating window scales linearly with the 
number of assets in the portfolio. Thus, the portfolio with 5 assets requires only 50 years of 
monthly data for reliable estimation.  
 
Several techniques have been proposed over the years to mitigate the issues surrounding the 
Markowitz model. At the core of portfolio management is the question “Which instruments 
should be removed and which ones kept”? The decision is hardly trivial. Big data techniques do 
help to pinpoint the keeper`s in a reasonable time.  
 
Traditional, not-big-data solutions to the problem of optimal portfolio allocation fall roughly into 
two categories: Bayesian and non-Bayesian. Bayesian approaches include statistical, 
diffuse-priors, “shrinkage” estimators and asset-pricing model priors. The Diffuse-priors 
approach was pioneered by Barry (1974) and Bawa, Brown and Klein (1979). The original 
shrinkage estimators date back to Jobson, Korkie and Ratti (1979), Jobson and Korkie (1980), 
Jorion (1985) and Jorion (1986). The original asset-pricing models for establishing a prior were 
discussed by Pastor (2000) and Pastor and Stambaugh (2000).  More recently, Brandt, Goyal, 
Santa-Clara and Stroud (2005). They develop, for example, a simulation-based approach using 
recursion of approximations to the portfolio policy. Garlappi and Skoulakis (2008) simulate 
optimal portfolio choices using recursion of approximations to the portfolio value function.  
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Non-Bayesian non-big-data approaches to minimizing estimation errors are similarly numerous. 
Goldfarb and Iyengar (2003) and Garlappi, Uppal and Wang (2007) propose “robust” portfolio 
optimization to deal with estimation errors using uncertainty structures and confidence intervals, 
respectively. Kan and Zhou (2007) introduce a market portfolio into a classic tangent and 
riskless asset portfolio model as a way to mitigate estimation errors. MacKinlay and Pastor 
(2000) restrict the moments of returns by imposing factor dependencies. Best and Grauer 
(1992), Chan, Karceski and Lakonishok (1999), Ledoit and Wolf (2004a) and Ledoit and Wolf 
(2004b) propose methods for reducing the errors in the estimation of variance-covariance 
matrices. Frost and Savarino (1988), Chopra (1993) as well as Jagannathan and Ma (2003) 
introduce short-selling constraints. 
 
A separate stream of literature considers different portfolio optimization frameworks that depend 
on the concurrent market regime (i.e  bull versus bear market). For example, Ang and Bekaert 
(2002) use Markov Regime Switching Model to show that regime-switching strategies that rely 
on macro factors as “states” outperform static portfolio allocation strategies out-of-sample. 
 
Optimization problems from other disciplines with similarities to portfolio management and 
optimal asset allocation have been successfully studied in great detail in the field of Big Data 
analytics. And Big Data has been making inroads in portfolio management. Partovi and Caputo 
(2004) were the first to apply PCA to the portfolio choice problem to decompose “principal 
portfolios” uncorrelated by construction. Meucci (2009) followed up on the idea with the creation 
of “maximum entropy portfolios”. Garlappi and Skoulakis (2008) apply Singular Value 
Decomposition (SVD) to solving several portfolio optimization problems in the context of the 
investor utility maximization. To do so, they deploy SVD to decompose state variables into 
fundamental “drivers” and “shocks”. The highest singular values or eigenvalues portray the 
drivers, while the lowest identify the shocks. Garlappi and Skoulakis (2008) apply the technique 
to solving the classic portfolio choice problem first proposed by Samuelson (1970) and extended 
by Hakansson (1971) and, later, Loistl (1976), Pulley (1981, 1983), Kroll, Levy and Markowitz 
(1984) and Markowitz (1991), among others. Allez and Bouchaud (2012) study eigenvalue 
evolution in covariance matrices and attempt to find a time-based pattern of covariance 
evolution. They find that the covariance eigenvalues evolve in time, as expected.  
 
This paper is the first to study the Big Data properties of the inverse of the correlation matrix and 
shows that the inverse is much more informative than the correlation matrix itself, from the Big 
Data perspective. Subsequently, the paper proposes Big Data approaches to harness the 
correlation inverse and to deliver superior-out-of-sample returns. 
 
The key advantages of the method we are proposing are: 

1) Conceptual simplicity 
2) Analytically-tractable performance improvements 
3) Empirically-verified portfolio gains 
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II. BIG DATA OVERVIEW 
 
Many Big Data techniques, such as spectral decomposition, first appeared in the 18th century 
when researchers grappled with solutions to differential equations in the context of wave 
mechanics and vibration physics. Fourier has furthered the field of eigenvalue applications 
extensively with partial differential equations and other work.  
 
At the heart of many Big Data models is the idea that the properties every data set can be 
uniquely summarized by a set of values, called eigenvalues. An eigenvalue is a total amount of 
variance in the dataset explained by the common factor. The bigger the eigenvalue, the higher 
proportion of the data set dynamics that eigenvalue captures.  
 
Eigenvalues are obtained via one of the techniques: Principal Component Analysis (PCA) or 
Singular Value Decomposition (SVD), discussed below. The eigenvalues and related 
eigenvectors describe and optimize the composition of the data set, perhaps best illustrated with 
an example of an image.  
 
Consider the black-and-white image shown in Figure 1. It is a set of data points, “pixels” in 
computer lingo, whereby each data point describes the color of that point on a 0-255 scale, 
where 0 corresponds to pure black, 255 to pure white, and all other shades of gray lie in 
between. This particular image contains 454 rows and 366 columns.  
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Figure 1. Original sample image. 
 
To perform spectral decomposition on the image, we utilize Singular Value Decomposition 
(SVD), a technique originally developed by Beltrami (1873). For detailed history of SVD, please 
see Stewart (1993). Principal component analysis (PCA) is a related technique that produces 
eigenvalues and eigenvectors identical to those produced by SVD, when PCA eigenvalues are 
normalized. Raw, non-normalized, PCA eigenvalues can be negative as well as positive and do 
not equal the singular values produced by SVD. For the purposes of the analysis presented 
here, we assume that all the eigenvalues are normalized, equal to singular values, and we’ll use 
the terms singular values and eigenvalues interchangeably throughout this paper, as the results 
presented can be developed using SVD as well as PCA techniques.  
 
In SVD, a matrix X  is decomposed into three matrices: U, S and V 
 

SVX = U ′ (1) 
 
where  
X is the original n x m matrix;  
S is an m x m diagonal matrix of singular values or eigenvalues sorted from the highest to the 
lowest on the diagonal; 
V’ is a transpose of the m x m matrix of so-called singular vectors, sorted accordingly to the 
sorting of S; and  
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U is an n x n “user” matrix containing characteristics of rows vis-a-vis singular values.  
 
SVD delivers singular values sorted from largest to the smallest. The plot of the singular values 
corresponding to the image in Figure 1 is shown in Figure 2. The plot of singular values is 
known as a “scree plot” since it resembles a real-life scree, a rocky mountain slope.  
 

 
 
Figure 2. Scree plot corresponding to the image in Figure 1. 
 
A Scree Plot is a simple line segment plot that shows: the fraction of total variance in the data 
as explained or represented by each singular value (eigenvalue). The singular values are 
ordered, are assigned a number label, by decreasing order of contribution to total variance. 

To reduce the dimensionality of a data set, we select k singular values. If we were to use the 
most significant of the singular values, typically containing macro information common to the 
data set, we would select the first k values. However, in applications involving idiosyncratic data 
details. we may be interested in the last k values, for example, when we need to evaluate the 
noise in the system. A rule of thumb dictates to break the eigenvalues into sets before the 
“elbow” and after the elbow sets in the scree plot. 
 
What is the perfect number of singular values to keep in the image of Figure 1? An experiment 
presented in Figures 3-9 shows the evolution of the data with varying number of eigenvalues 
included. The eigenvalues and the corresponding eigenvectors comprised of linear 
combinations of the original data create new “dimensions” of data. As the Figures show, as few 
as 10 eigenvalues allow a human eye to identify the content of the image, effectively reducing 
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dimensionality of the image from 366 columns to 10. 

To create the reduced data set, we restrict the number of columns in the S and V matrices to k 
by selecting k first elements. The resulting matrix  has dimensions n rows and kXreduced  
columns, where  

 S  VXreduced, n x k  
= U n x k k x k

T
k x k (2) 

 

 

Figure 3. Reconstruction of the image of Figure 1 with just the first eigenvalue. 
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Figure 4. Reconstruction of the image in Figure 1 with the first two eigenvalues. 
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Figure 5. Reconstruction of the image of Figure 1 with the first 4 eigenvalues. The outlines of 
the figure are beginning to appear.  

 

Figure 6. Reconstruction of the image in Figure 1 with the first 10 eigenvalues. 
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Figure 7. Reconstruction of the image in Figure 1 with the first 50 eigenvalues.  
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Figure 8. Reconstruction of the image in Figure 1 with the first 100 eigenvalues. 

 

Figure 9. Reconstruction of the image in Figure 1 with the first 200 eigenvalues. 

 
 
 
III. BIG DATA IN PORTFOLIO OPTIMIZATION: THEORY AND SIMULATION 
 
3.1. Traditional portfolio overview  
 
Markowitz-style portfolio optimization is often known as “mean-variance optimization” as it seeks 
to increase mean returns while simultaneously decrease variance in portfolios. Denoting the 
beginning prices of each asset i , we can express the investment portfolio as:, i , , .., nX i  = 0 1 .   

X  X ... w X  w0 0 +  w1 1 +  +  n n (3) 

where  are portfolio weights: the proportion of the total portfolio wealth that is, i 0, , ..., nwi  =  1    
invested in the asset i. The sum of the weights of the portfolio assets is then equal to 1, and 

. The asset with  is often assumed to be the prevailing risk-free ... w  1 w0 +  w1 +  +  n =  i = 0  
rate, denoted .r0   
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Denoting risk aversion as , we now express the traditional mean-variance optimization asγ  
follows: 

ax        s.t. w 1m w,w0
(w r μ w Σw)0 0 + w′ − γ ′  0 + w′ = 1 (4) 

where  represents the variance-covariance matrix of the returns of the n assets underΣ  
consideration. 

Subtracting the risk-free rate, the maximization problem can be rewritten as follows: 

ax        s.t. w 1m w,w0
(w (μ 1) w Σw)′ − r0 − γ ′  0 + w′ = 1 (5) 

Equation (2) then leads to the following optimal solution:  

Σ (μw = 1
2γ

−1 − 1)r0 (6) 

While the vector of returns is typically assumed to be the long-running average of returns on 
assets under consideration (see, for example, Jegadeesh and Titman, 1993), the covariance 
matrix presents several challenges to researchers and practitioners. Specifically, the covariance 
matrix can in turn be decomposed into variance and correlation matrices. While variances tend 
to be “sticky” and reasonably predictable by techniques like GARCH (Engle 1982, Bollerslev 
1986, Andersen et al. 2006, Wong 2014), correlations of asset returns are notoriously volatile 
(see Davis and Mikosch 1998, Gourieroux 1997 and Cont 2001). It is the properties of correlation 
matrices that induce two key problems portfolio managers encounter when implementing 
mean-variance optimization:  

1) Possibly extreme positions in selected assets (i.e. large proportion of the portfolio) 
resulting in liquidity constraints and violating the economic equilibrium of the portfolio 
allocation. To solve the issue, Black and Litterman (1993) and others propose a blended 
solution between economic equilibrium and mean-variance optimization. 

2) Possibly extreme changes in portfolio weights from one investment period to the next, 
resulting in large transaction costs. Bertsimas and Lo (1998), Liu and Mei (2004), 
Muthuraman and Kumar (2006), Lynch and Tan (2008), DeMiguel and Nogales (2016), 
for example, propose penalizing the mean-variance optimization function with 
transaction costs as the remedy to the problem. However, such methods often tend to be 
opaque in practice.  

Spectral decomposition of the inverse of the correlation matrix appears to be more promising 
and robust. The eigenvectors of an invertible matrix are also the eigenvectors of the matrix’ 
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inverse. To show this, consider an invertible matrix A. Matrix A is invertible if and only if its 
determinant is not zero (Lipschutz 1991, p. 45), which in turn implies that matrix A columns are 
linearly independent, further implying that its eigenvalue  is not zero. Suppose that matrix Aλ  
has eigenvectors v. By definition of eigenvectors, Av = v. Multiplying by  from the left, weλ A−1  
obtain: 

v = vλA−1 (7) 
v = vA−1 1/λ)( (8) 

 
Setting eigenvalues to zero prior to matrix inversion renders matrices singular, and, therefore, 
non-invertible. In other words, reducing the spectral dimensionality of the correlation matrices 
and subsequent inversion “blow up” the outcome. To overcome the issue, researchers often use 
“whitening” -- replacing set-to-zero eigenvalues with white noise N(0,1) to allow matrix 
invertibility. The process introduces noise into the system and may not be optimal.  
 
Another solution is to exploit the fact that singular values of a matrix may be found and the 
dimensions reduced after the inversion with equal success and without sacrificing data 
precision.  
 

A(AB)−1 = B−1 −1 (9) 
 
More generally, 

 (∏
N

k=0
Ak)

−1

= ∏
N

k=0
A−1

N−k (10) 

 
So, for Singular Value Decomposition  

(p) (p)S(p)V (p)A = U ′ (11) 
  
the inverse becomes  

S U(A(p))−1 = (V )′ −1 −1 −1 (12) 
 
Singular Value Decomposition of the inverse of the correlation matrix is, therefore, much more 
precise as no data is lost due to the poorly-specified input to the inversion process that occurs 
with Whitening methodology.  
 
Accordingly, the Singular Value Decomposition in the case of the matrix inversion can be 
performed as follows: the spectral decomposition can be performed after the matrix inversion 
without sacrificing results. 
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If SVD decomposes a correlation matrix C into , then the inverse of the matrix C canSVC = U T  

be written as , where is the inverse of the diagonal matrix S:S U  C−1 = V( T)−1
−1 −1 S−1  

  0  0  ...      0S = 1  
          0  ...      00 2  

...  
     0   0   ...   0 n−1  
         0   0   ...    0 n  
 

  0        0     ... 0S−1 = 1/n  
               1/  0     ... 00 n−1  

... 
                0        1/ ... 00 2  
                0        0     ... 1/0 1  
 
Inverting the correlation matrix first, and then spectrally decomposing it to retrieve eigenvalues 

, therefore, allows the researchers to retain a lot more precision. Instead of replacing the}{  
irrelevant eigenvalues with noise to allow inversion, the proposed process is to replace the 
eigenvalues directly with 0 post-inversion. 
 
 
3.2. Reducing the inverse of the correlation matrix 
 
Which eigenvalues should you keep or discard? This, once again, is a non-trivial question. 
Spectral decomposition of the original, non-inverted, correlation matrix results in principal 
components or portfolios sorted according to their universality vis-a-vis all assets considered. 
Thus the largest component often represents the “global macro” portfolio factor driving most of 
the performance and typically reflecting the broad market movement. Several of the following 
eigenvalues deliver portfolios that induce synchronized fluctuations of groups of stocks; these 
can be factors driving industries, etc. The remaining small components are idiosyncratic in 
nature. Spectral decomposition of the inverted correlation matrix produces the eigenvalues 
sorted in the opposite order: from smallest to the largest.  
 
Numerous big data techniques have been developed to help us understand the information 
content of the matrix under consideration, in our case, the inverse of the correlation matrix. 
Here, we develop and prove a conjecture that the top eigenvalue information content of the 
inverse of the correlation matrix always exceeds that of the correlation matrix itself. As a result, 
the big data analysis pertaining to the optimal portfolio allocation should be carried out on the 
correlation matrix inverse, not on the correlation matrix as it is done at present. 
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Correlation and covariance matrices contain real values, are symmetric with , and ∀i,aij = aji j  
are, therefore, called real symmetric, also known as Hermitian. A Hermitian  matrix has n × n  
long been shown to have n real eigenvalues, all of which are non-negative and non-trivial (see, 
for example, Deift and Gioev, 2009). Under the SVD, these eigenvalues are 

 ..0 ≤ λn ≤ . ≤ λ1  (16) 
As shown by equation (12), the inverse of the correlation matrix has eigenvalues: 

 ..0 ≤ 1/λ1 ≤ . ≤ 1/λn  (17) 
 
We are interested in the most descriptive eigenvalues and eigenvectors of the correlation matrix 
and its inverse. From the pure correlation matrix point of view, we should be retaining the 
largest eigenvalue in the correlation matrix, . However, from the perspective of the inverse ofλ1  
the correlation matrix we may consider retaining the largest eigenvalue of the inverse, ,1/λn  
instead..  
 
A stream of literature following Borodin and Forrester (2003) develop a detailed Central Limit 
Theorem derivation for the largest and the smallest eigenvalues for Gaussian matrices. Tao and 
Vu (2012) and Wang (2012), among others, extend the results to covariance matrices, which 
are a special case of correlation matrices.  
 
Specifically, Tao and Vu (2012) develop results for covariance matrices of any two random 
matrices M satisfying the following conditions: the matrix elements are i.i.d., normally distributed 
with mean 0 and variance 1, and have finite moments. Such conditions clearly satisfy the 
properties of normalized lognormal returns of financial instruments. The Tao and Vu (2012) 
results, therefore, apply to the financial returns covariances and correlation matrices as the 
special subset of the covariance structures. According to these results, the variances of the 
largest and the smallest eigenvalues are bounded by , where n is the rank of the matrixn−4/3  
and the number of the eigenvalues. The Tao and Vu (2012) result, however, does not let us 
identify the bounds of the largest and the smallest eigenvalues in a sufficient enough detail: both 
the correlation matrix and its inverse have the same rank, making it impossible to compare the 
eigenvalues of the correlation matrix and those of the inverse.  
 
Instead, we follow Wolkowicz and Styan (1980), who prove that for any matrix A with real 
eigenvalues , the following result holds:(A)λ  

(n ) /(n )m − s − 1 1/2 ≤ λmin ≤ m − s − 1 1/2 (18) 
/(n ) (n )m + s − 1 1/2 ≤ λmax ≤ m + s − 1 1/2   (19) 

where , r(A)/nm = t r(A )/ns2 = t 2 − m2  
 
The trace of the correlation matrix, , is defined as the sum of the diagonal elements and isr(A)t  
always known to us in advance: 
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r(A)t = n (20) 
since all the diagonal elements of a correlation matrix are identities, 1.0. Thence, m in equations 
(18) and (19) becomes 1.  
Similarly, the trace of , , is easy to find, since trace is also always equal to the sum ofA2 r(A )t 2  
the eigenvalues of the matrix. For ,A2  

r(A )t 2 = ∑
n

i=1
λi

2 (21) 

Then, equations (18) and (19) can be rewritten as follows with , :m = 1 /ns2 = ∑
n

i=1
λi

2 − 1  

(n ) /(n )1 − s − 1 1/2 ≤ λmin ≤ 1 − s − 1 1/2 (22) 
/(n ) (n )1 + s − 1 1/2 ≤ λmax ≤ 1 + s − 1 1/2   (23) 

 
Ultimately, we are interested in bounds of the smallest and the largest eigenvalues of the 
inverse of the correlation matrix, and = , respectively. Since, by equation/λλ′min = 1 max λ′max 1/λmax  
(17), , the so-called “bulk” of the eigenvalues will fall into place between ..0 ≤ 1/λmax ≤ . ≤ 1/λmin  
the bounds on the edge values. 
 
From equation (23), , we obtain:/(n ) (n )1 + s − 1 1/2 ≤ λmax ≤ 1 + s − 1 1/2  

/λ /(1 /n )(n ) )λ′min = 1 max ≥ 1 + ( ∑
n

i=1
λi

2 − 1 − 1 1/2 (24)  

/λ /(1 /n )/(n ) ) /((n ) )λ′min = 1 max ≤ 1 + ( ∑
n

i=1
λi

2 − 1 − 1 1/2 = (n )− 1 1/2 − 1 1/2 + s (25) 

Similarly, from equation (22), 
/(1 (n ) )λ′max = 1/λmin ≤ 1 − s − 1 1/2 (26) 
/(1 /(n ) ) /((n ) )λ /λ′max = 1 min ≥ 1 − s − 1 1/2 = (n )− 1 1/2 − 1 1/2 − s (27)  

 
The results of equations (24)-(27) hold for any matrix, real or complex, and the eigenvalues may 
be negative. Correlation matrices happen to be real and symmetric, known as Hermitian, and 
their eigenvalues are bounded by 0 from below. We would like to compare the range of 
eigenvalues for the correlation and its inverse. Hence, we are interested in establishing the 
lower bounds for the maximum eigenvalues, , and the upper bounds for the minimumλ′max  
eigenvalues, , for the correlation inverse, and comparing the two between correlationλ′min  
matrices and their inverses. 
 
From (22)-(27), we obtain: 

/(n )λmin ≤ 1 − s − 1 1/2 (28) 
/((n ) )λ′min ≤ (n )− 1 1/2 − 1 1/2 + s (29) 

/(n ) /((n ) )λmax ≥ 1 + s − 1 1/2 = (n )− 1 1/2 − 1 1/2 + s (30) 
/(1 /(n ) ) /((n ) )λ′max ≥ 1 − s − 1 1/2 = (n )− 1 1/2 − 1 1/2 − s (31)  
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From equations (28)-(31), we can conclude that while the lower bounds for the smallest 
eigenvalues of the correlation matrix and its inverse may be comparable, the upper bounds for 
the largest eigenvalues are clearly higher for the largest eigenvalue of the inverse.  
λ′max ≥ λmax (32)  
Furthermore, the largest eigenvalue of the correlation matrix is less or equal to 1, while the 
largest eigenvalue of the correlation inverse definitely exceeds 1.  
 
 
THEOREM 1:  
 
The largest eigenvalue of the inverse of the correlation matrix is always larger than the largest 
eigenvalue of the correlation matrix itself. 
 
PROOF: by previous. 
 
The obtained results are independent of the underlying distribution of returns. Indeed, the result 
accommodate Gaussian, leptokurtic and other distributions with equal effect, making the 
strategy robust to a variety of financial return models.  
 
 
3.3. Simulation 
 
To ascertain the validity of our conjecture, we perform 10,000 experiments of the following 
nature:  

1. We create a random symmetric 100x100 matrix  simulating real-life correlationA }{ ij  
structure: all the values on the diagonal are set to 1.0, and all other values for =i / j  
range in the interval , with entries .− .0, 1.0][ 1   ∀ i, jaij = aji   

2. We compute and document the eigenvalues of the correlation matrix and its inverse. 
 
As the results presented in Table 5 illustrate, the top eigenvalue of the inverse is considerably 
higher than the top eigenvalue of the correlation matrix itself.  
 
 
TABLE 1. Summary statistics for eigenvalues of 10,000 simulated correlation matrices and their 
inverses. 
 

 Top 1 Bottom 1 Top 1 Inverse 
Bottom 1 
Inverse 

mean 11.60537822 0.05523877 312.46715013 0.08622607 
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stdev 0.30493585 0.04221966 
8,508.6027317

2 0.00225207 

skew 0.30964001 1.00654776 50.50362873 -0.14982966 

kurt 0.17120805 0.88971901 
2,776.6559658

1 0.02559518 

max 12.83546300 0.25704200 
500,000.00000

0 0.09435499 

99% 12.39773146 0.18056210 
1,545.2583525

5 0.09108325 

95% 12.12671910 0.13857045 262.28504037 0.08983642 

90% 12.00535900 0.11442080 121.92152061 0.08909438 

75% 11.80207150 0.08023350 46.19737847 0.08777734 

50% 11.59161850 0.04672950 21.39976314 0.08626923 

25% 11.39246225 0.02164625 12.46362244 0.08473089 

10% 11.22405270 0.00820200 8.73966974 0.08329613 

5% 11.13134355 0.00381265 7.21654767 0.08246254 

1% 10.97896710 0.00064715 5.53826083 0.08065992 

min 10.59827400 0.00000200 3.89041480 0.07790915 

 
 
 
III. OUT-OF-SAMPLE APPLICATIONS TO FINANCIAL DATA 
 
We next test investment strategies on the historical financial data. The test utilizes daily closing 
price data for the S&P500 constituents for the 20-year period spanning 1998-2017 obtained 
from Yahoo!. We assume monthly portfolio reallocation and test the following strategies on the 
S&P 500 data: Equally-Weighted (EW), vanilla Mean-Variance Optimization (MVO), Principal 
Component Analysis (PCA) with the top eigenvalues retained, and Inverse Principal Component 
Analysis (Inverse_PCA) with the bottom eigenvalues of the inverse taken into the account, and 
the bottom eigenvalues discarded.  
 
To compute strategy performance, we first determine the lognormal daily returns from the price 
data: 

og(P ) og(P )rt = l t − l t−1 (33) 
We next compute monthly correlation matrices using the returns falling into each calendar 
month in the 1998-2017 span. Each correlation matrix then serves as an input to the strategy 
evaluation over the following month. For example, the correlation matrix computed on January 
30, 1998, serves as the input for portfolio selection for February 1998.  
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Monthly performance of the strategies is next measured using the strategy weights computed 
on the last day of the previous month. The performance evaluation applies the weights to the 
returns observed on the last trading day of the following month vis-a-vis the price levels 
observed on the last day of the portfolio creation month. Thus, the performance of portfolios 
created on January 30, 1998, is tested by returns observed from the closing price on January 
30, 1998, to the closing price observed on February 27, 1998.  
 
Figures 10-13 document performance of the monthly reallocation of the strategies. As the 
Figures show, the PCA_Inverse strategy outperforms the other strategy when the number of 
selected eigenvalues is small, like the Top 1 eigenvalue selected in PCA_Inverse strategy 
shown in Figures 1 (with outliers) and 2 (outliers removed for clarity). As the number of retained 
eigenvalues increases, the PCA_Inverse strategy loses its power and eventually yields to the 
EW strategy. 
  
Table 2 shows the Sharpe ratios from the obtained strategies. As Table 2 shows, the 
PCA_inverse strategy consistently outperforms other portfolio management strategies, 
particularly when the outliers, such as extreme one-time returns, are discarded from the data. 
Table 3 presents average monthly returns for each strategy computed over the 1998-2017 
period. As shown in Table 3 once again, the PCA_inverse strategy delivers superior results 
when a concentrated number of eigenvalues is deployed to create an optimal portfolio 
allocation. 
 
The results of the analysis so far show that just the top eigenvalue of the inverse of the 
correlation matrix contains enough portfolio information to outperform the other strategies. Just 
how many instruments does such a strategy contain? Figure 14 and Table 4 help answer this 
question. The number of positions with the absolute value greater or equal to 2% of the total 
portfolio value varied throughout the 20-year period, the number of stocks was significantly 
smaller than that of other strategies, pointing to a “smart diversification” portfolio selection of the 
PCA_Inverse strategy. 
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FIGURE 10. S&P 500 Strategy, monthly reallocations: keep the top 1 eigenvalue in the 
correlation matrix (bottom 1 eigenvalue in the correlation matrix inverse). Gross cumulative 
annualized returns of Equally-weighted (EW), standard mean-variance optimized (MVO), 
inverse correlation largest eigenvalue deciles (Inverse Largest), and inverse correlation smallest 
eigenvalue decile (Inverse Smallest) portfolios. 
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FIGURE 11. S&P 500 Strategy, monthly reallocations: keep the top 1 eigenvalue in the 
correlation matrix (bottom 1 eigenvalue in the correlation matrix inverse), outliers removed.  
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FIGURE 12. S&P 500 Strategy, monthly reallocations: keep the top 1% of  eigenvalues in the 
correlation matrix (bottom 1% of eigenvalues in the correlation matrix inverse). 

 
Figure 13. S&P 500 Gross cumulative annualized returns of Equally-weighted (EW), standard 
mean-variance optimized (MVO), inverse correlation largest eigenvalue deciles (Inverse 
Largest), and inverse correlation smallest eigenvalue decile (Inverse Smallest) portfolios. 
 
 
 
 
TABLE 2. Sharpe ratios on strategy performance, S&P 500, 1998-2017, monthly reallocation 

 EW MVO PCA PCA_Inverse 

10% 
Eigenvalues 0.4398529652 0.1660338977 0.2175831572 -0.05572290167 

1% Eigenvalues 0.4398529652 0.1660338977 -0.2620669154 0.1854018356 

1 Eigenvalue, 
with outliers 0.4398529652 0.1660338977 0.1121639833 0.2838331832 

1 Eigenvalue, 
outliers removed 0.4398529652 -0.1695154284 -0.3799479568 0.6117174285 
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TABLE 3. Average monthly returns per strategy, S&P 500, 1998-2017, monthly reallocation 

 EW MVO PCA PCA_Inverse 

10% 
Eigenvalues 0.0002994329004 0.004832313043 0.01287782073 -0.001001351801 

1% Eigenvalues 0.0002994329004 0.004832313043 -0.01278558696 0.001204575758 

1 Eigenvalue, 
with outliers 0.0002994329004 0.004832313043 0.007869265217 0.01649431169 

1 Eigenvalue, 
outliers removed 0.0002994329004 -0.001353022026 -0.008363651982 0.003141938326 

 
 

 
FIGURE 14: Number of securities selected each month from the S&P 500 by Inverse PCA 
method, 1998-2017, using only the top eigenvalue of the inverse. It is common for the algorithm 
to deliver single-digit number of names under this portfolio construction.  
 
 
TABLE 4. Mean and Standard deviation (in parentheses) for the number of equities from the 
S&P 500 with absolute values of weights exceeding 1% or 2% of the entire portfolio selected 
monthly by vanilla Mean-Variance Optimization (MVO), Principal Component Analysis (PCA) 
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and PCA_Inverse method for different eigenvalue cutoffs. Data: 1998-2017, monthly portfolio 
rebalancing. 
 
 

  MVO PCA PCA_Inverse 

Top 1 
Eigenvalue 

|weight|>1% 375.49 (82.16) 375.15 (82.94) 192.44 (117.07) 

|weight|>2% 343.57 (88.33) 343.40 (89.77) 112.64 (116.94) 

Top 1% of 
Eigenvalues 

|weight|>1% 375.49 (82.16) 376.49 (84.30) 190.90 (115.95) 

|weight|>2% 343.57 (88.33) 346.27 (91.65) 109.98 (115.37) 

Top 10% of 
Eigenvalues 

|weight|>1% 375.69 (84.82) 377.83 (85.41) 372.13 (82.73) 

|weight|>2% 341.54 (93.03) 343.97 (93.17) 335.50 (89.24) 

 
 
 
 
CONCLUSIONS 
 
We show that the inverse of the correlation matrix carries inherently higher information content 
than the correlation matrix itself, affecting the Markowitz portfolio allocation strategies. To 
harness the power of Big Data analytics to capitalize on this information content, we propose a 
Big Data refinement to portfolio selection and test it on the S&P 500 index from 1998 through 
2017. Our methodology appears to consistently outperform other common methods, such as 
equally-weighted portfolio allocation, plain mean-variance optimization and previously 
suggested big data portfolio optimization methodologies. 
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